6D’s revolutionary patented Omni-Directional Suspension (ODS) embodies a fully active, in-helmet suspension and kinetic energy management system. The goal was simple; design a helmet that reduced energy transfer to the brain over a much broader range of energy demands, including LOW, MID, and HIGH-VELOCITY impacts for both LINEAR and ANGULAR ACCELERATIONS.

6D’s suspended dual-liner assembly will displace and shear omni-directionally when subjected to impact. This capability provides significantly improved performance against both linear and angular accelerations. There is simply no other helmet technology that can provide these combined energy management benefits.

Elastomeric Isolation Damper

This damper is the heart and soul of 6D’s exclusive ODS technology. An array of dampers work in unison with the dual EPS liners to isolate impact energy from your brain. The elastic properties of the dampers, combined with their unique ‘hourglass’ shape provide a progressive spring rate that manages low and mid-threshold accelerations, while simultaneously allowing the inner EPS liner to displace and shear in 3-dimensional space within itself. This omni-directional suspension capability provides ‘six degrees of freedom’, which became the inspiration for our company name; ‘6D Helmets.’


Angular acceleration is defined as the rate of change of angular velocity over time. Angular acceleration is generated from oblique angle impacts to the helmet’s surface and is particularly concerning to one’s health and long-term well-being. The medical community agrees that angular acceleration is a primary cause of concussion (a mild-traumatic brain injury (MTBI)), and traumatic brain injury (TBI). These types of injuries occur from oblique impacts to the helmet and are serious. The result of this type of impact, and subsequent energy transfer to the brain, is shearing, tearing, compression, and rotations of the brain within the skull.

Experiments conducted by David C. Viano, PhD. M.D. at the Bio-Engineering Center at Wayne State University confirmed that a helmeted head sustained the same degree of angular acceleration as the un-helmeted head when subjected to identical impacts. So, if angular acceleration is a major cause of concussion (or worse), how is the brain protected by traditional helmet design? Unfortunately, in respect to angular acceleration, it is not.

The graphs shown here identify how 6D’s proprietary Omni-Directional Suspension technology dramatically reduces the transfer of angular acceleration to the head form during both a high-velocity and low-velocity impact. When thinking in terms of “less is more”, this significant reduction in energy transfer most certainly has to be to the benefit of the athlete during a crash event.

*(Low-Velocity) Peak Angular Accelerations during incline anvil testing at 3m/sec, Front.
**(High-Velocity) Peak Angular Accelerations during incline anvil testing at 6m/sec, Left Forward.


Recent medical research has provided alarming conclusions surrounding the causes, severity, and long-term effects of concussions. We now know that even seemingly minor concussions (‘I’m fine, I just rang my bell’) may have much more serious effects on the long-term health and well-being of one’s brain. It’s well documented that concussions can occur from impacts in the lower range of 60 G’s** in adult males and may be location dependent. This value is even less in women and children.

To meet high certification test velocities, conventional helmets are simply too stiff to effectively absorb energy from impacts at lower impact velocities. The vast majority of impacts in ‘real world’ crashes are what we qualify as ‘low-threshold energy’ impacts well below the pass/fail certification velocities, but at or above the velocity necessary to sustain a concussion or brain injury. In this critical area of energy management the 6D helmet pays huge benefits when compared to traditional helmet designs. 6D’s proprietary ODS starts working the instant any force is applied to the shell, making the helmet much more compliant and progressive on the highest percentage of ‘real world’ crash impacts.

**Research on football player impacts has shown that concussions may occur at 60 G’s. Guskiewicz KM, Mihalik JP, Shankar V, et al. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after collision. Neurosurgery 2007;61: 1244 –1253.


Across the entire range of impact velocities the ODS technology consistently outperforms the competition. 6D engineers meticulously evaluate the shell design, shell layup, damper array, damper durometer, and EPS densities to provide the best possible matrix of the materials for superior impact management performance. No other system or technology is more technically advanced or capable of reducing energy transfer to the brain.


Time to peak (TTP) is the measurement of time (in milliseconds) it takes the energy of an impact to reach the maximum (peak) G force. Deceleration time is the single most beneficial component of reducing the severity and magnitude of any impact. The more time, the less severe the energy transfer will become. 6D’s proprietary ODS technology buys time, in fact more than doubles the TTP in most impacts below 6 m/sec! The really cool news here is the significant reduction in energy transfer that comes simply with time.


The exceptional test results in this catalog are the actual test data generated from hours of testing the 6D ATR-1 helmet against current model SNELL, ECE and DOT certified helmets in a fully-independent, third-party laboratory testing facility;

Dynamic Research, located in Torrance, California. Dynamic Research is recognized as the leader in helmet testing, evaluation and is a pioneer in measuring and evaluating angular acceleration energy.